Size range and options

Size range to suit the entire population and all fingers of the hand.

Templating for metacarpal size selection.

Four diameters of metacarpal head.

Modular design with interchangeable fixation options for individual patient requirements.

Seven metacarpal plug and proximal phalanx size options for optimum fit with medullary canals.

Advanced instrumentation

Fully instrumented procedure with guided preparation for reliable and repeatable surgery.

Precise and easy to use instrumentation includes ligament balancing tools for controlled joint restoration.

Instruments guide resection depths equal to the thickness of device for restoration of soft tissue tensions.

Stepwise procedure enables downsizing the canal to bearing.

Single instrument tray system facilitates concurrent fingers per case with an integrated memory block.

Fully guided cuts aligned to the hand minimise any radial displacement of components.

Developed with Mr D Harris FRCS, Robert Jones & Agnes Hunt Orthopaedic Hospital, Hand & Upper Limb Unit, Oswestry, UK.

MatOrtho Limited | 13 Mole Business Park | Randalls Road | Leatherhead | Surrey | KT22 7BA | United Kingdom.
T: +44 (0)1372 224 200 | info@MatOrtho.com | For more information visit: www.MatOrtho.com
Part No. ML-300-036 L | Issue 2

TMRP™
Total Metacarpophalangeal Replacement

Product Brochure

Natural Function
The TMPR™ has been in clinical use since 1994. It has been shown to reduce pain and restore an arc of flexion from 10º to 70º [1], which is the range required for most daily activities [3]. Pinch and grip strength were also maintained at final follow-up [1].

Dense bone surrounding the device described previously [2] can be observed post-operatively and in a reported series of 13 TMPR™ joints followed up at mean 5 years, no evidence of loosening was found. The same series also showed no signs of wear after 5 years [1].

Patients report near normal flexion, extension and movement at 3 and 5 years and, patient evaluation measure (PEM) scores show improvement from mean 77% pre operatively to 9% at 3 and 5 years post operatively [1].

Intraoperative and postoperative complications are minimal. In a series of 13 TMPR™ devices only one patient had any complication (infection) [1], which was revised with without gross loss of bone stock, and restored, resulting in pain-free active movement.

The TMPR™ is associated with:
- Good pain relief;
- A range of motion required for activities of daily living;
- A strong, stable pinch and grip;
- Patient-perceived restoration of near normal function;
- Minimal intraoperative and postoperative complications.

Barb-action fins flex on insertion and spring back to engage the endocortex for immediate secure fixation. The flexible fins mould to the endosteal bone and protect from mechanical loosening by absorbing lateral stresses.

Fixation design with over 40 years’ clinical heritage where formation of dense bone is usually visible radiographically [2].

Dense bone surrounding the device described previously [2] can be observed post-operatively and in a reported series of 13 TMPR™ joints followed up at mean 5 years, no evidence of loosening was found. The same series also showed no signs of wear after 5 years [1].

The spherical metacarpal bearing provides close to normal movement in the MCP joint and maintains full conformity throughout ROM. The metacarpal head has a groove to stabilise the extensor mechanism and side panels to protect the collateral ligaments. Offset stems correspond to the insertion points of the collateral ligaments and provide a stabilising action during flexion-extension. Long-term fixation is achieved with locking barb-action fins and decoupled stress transfer.

Shallow dished surface fully congruent throughout flexion for low wear.

Ligament balancing for optimum joint restoration.

Full ROM stability and physiological tightening of collateral ligaments in flexion by reproducing the natural cam effect.

Dorsal groove for the extensor tendon.

Flared cams protect collateral ligaments from abrasion during flexion-extension.

Fixation extends to mid-shaft to distribute load.

Uncemented interference-fit fixation preserves bone stock and prevents destructive bone loss in case of revision.

Distraction and rotation forces attenuated between the decoupled bearing and fixation interface.

Anatomical joint centre of rotation is maintained with spherical bearing offset palmar-wards to preserve physiological flexion-extension moment arms.

Anatomically shaped fixation profiles conform to the shapes of the medullary canals conserving bone stock.

Anatomically shaped fixation profiles conform to the shapes of the medullary canals conserving bone stock.

Proven CoCr on UHMWPE ball-and-socket surface replacement.

Anatomical joint centre of rotation is maintained with spherical bearing offset palmar-wards to preserve physiological flexion-extension moment arms.

Uncemented interference-fit fixation preserves bone stock and prevents destructive bone loss in case of revision.

Distraction and rotation forces attenuated between the decoupled bearing and fixation interface.

Anatomical joint centre of rotation is maintained with spherical bearing offset palmar-wards to preserve physiological flexion-extension moment arms.

Anatomically shaped fixation profiles conform to the shapes of the medullary canals conserving bone stock.

Proven CoCr on UHMWPE ball-and-socket surface replacement.

Anatomical joint centre of rotation is maintained with spherical bearing offset palmar-wards to preserve physiological flexion-extension moment arms.

Anatomically shaped fixation profiles conform to the shapes of the medullary canals conserving bone stock.

Proven CoCr on UHMWPE ball-and-socket surface replacement.

Anatomical joint centre of rotation is maintained with spherical bearing offset palmar-wards to preserve physiological flexion-extension moment arms.

Anatomically shaped fixation profiles conform to the shapes of the medullary canals conserving bone stock.

Proven CoCr on UHMWPE ball-and-socket surface replacement.

Anatomical joint centre of rotation is maintained with spherical bearing offset palmar-wards to preserve physiological flexion-extension moment arms.

Anatomically shaped fixation profiles conform to the shapes of the medullary canals conserving bone stock.

Proven CoCr on UHMWPE ball-and-socket surface replacement.

Dorsal groove for the extensor tendon.

Flared cams protect collateral ligaments from abrasion during flexion-extension.